The Set of Primitive Recursive Functions 1

نویسندگان

  • Grzegorz Bancerek
  • Piotr Rudnicki
چکیده

We follow [31] in defining the set of primitive recursive functions. The important helper notion is the homogeneous function from finite sequences of natural numbers into natural numbers where homogeneous means that all the sequences in the domain are of the same length. The set of all such functions is then used to define the notion of a set closed under composition of functions and under primitive recursion. We call a set primitively recursively closed iff it contains the initial functions (nullary constant function returning 0, unary successor and projection functions for all arities) and is closed under composition and primitive recursion. The set of primitive recursive functions is then defined as the smallest set of functions which is primitive recursively closed. We show that this set can be obtained by primitive recursive approximation. We finish with showing that some simple and well known functions are primitive recursive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Set of Primitive Recursive Functions 1 Grzegorz Bancerek University of Białystok Shinshu

We follow [23] in defining the set of primitive recursive functions. The important helper notion is the homogeneous function from finite sequences of natural numbers into natural numbers where homogeneous means that all the sequences in the domain are of the same length. The set of all such functions is then used to define the notion of a set closed under composition of functions and under prim...

متن کامل

Diagonal arguments and fixed points

‎A universal schema for diagonalization was popularized by N.S‎. ‎Yanofsky (2003)‎, ‎based on a pioneering work of F.W‎. ‎Lawvere (1969)‎, ‎in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function‎. ‎It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema‎. ‎Here‎, ‎we fi...

متن کامل

An Enumeration of the Primitive Recursive Functions without Repetition

In a theorem and its corollary [1] Friedberg gave an enumeration of all the recursively enumerable sets without repetition and an enumeration of all the partial recursive functions without repetition. This note is to prove a similar theorem for the primitive recursive functions. The proof is only a classical one. We shall show that the theorem is intuitionistically unprovable in the sense of Kl...

متن کامل

The Primitive Recursive Functions are Recursively Enumerable

Meta-operations on primitive recursive functions sit at the brink of what is computationally possible: the semantic equality of primitive recursive programs is undecidable, and yet this paper shows that the whole class of p.r. functions can be enumerated without semantic duplicates. More generally, the construction shows that for any equivalence relation ≈ on natural numbers, N/ ≈ is r.e. if ≈ ...

متن کامل

A complete characterization of primitive recursive intensional behaviours

We give a complete characterization of the class of functions that are the intensional behaviours of Primitive Recursive algorithms. This class is the set of primitive recursive functions that have a null basic case of recursion. This result is obtained using the property of ultimate unarity and a geometrical approach of sequential functions on N the set of positive integers. AMS Subject Classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004